Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# [N,N'-Bis(4-chlorobenzyl)propane-1,2diamine1dichloridozinc(II)

## Shu-Ping Yang,<sup>a</sup>\* Li-Jun Han,<sup>b</sup> Da-Qi Wang<sup>c</sup> and Hai-Tao Xia<sup>a</sup>

<sup>a</sup>Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, <sup>b</sup>Department of Mathematics and Science, Huaihai Institute of Technology, Lianyungang 222005, People's Republic of China, and College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: yangshuping@hhit.edu.cn

Received 12 October 2007; accepted 16 October 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.017 Å; R factor = 0.115; wR factor = 0.217; data-to-parameter ratio = 15.9.

In the title complex,  $[ZnCl_2(C_{17}H_{20}Cl_2N_2)]$ , the Zn<sup>II</sup> atom is coordinated by two Cl atoms and two N atoms of the N,N'bis(4-chlorobenzyl)propane-1,2-diamine ligand, and displays a tetrahedral coordination geometry. Two N-H···Cl hydrogen bonds link the molecules into a chain of  $R_2^2(8)$  rings.

#### **Related literature**

For related literature, see: Bernstein et al. (1995); Han et al. (2006); Liu et al. (2007).



#### **Experimental**

#### Crystal data

 $[ZnCl_2(C_{17}H_{20}Cl_2N_2)]$  $M_r = 459.52$ Orthorhombic, Pbca a = 14.638 (2) Å b = 10.770 (1) Åc = 26.090 (3) Å

V = 4113.2 (9) Å<sup>3</sup> Z = 8Mo  $K\alpha$  radiation  $\mu = 1.72 \text{ mm}^-$ T = 298 (2) K 0.59  $\times$  0.18  $\times$  0.14 mm

# metal-organic compounds

 $R_{\rm int} = 0.216$ 

15270 measured reflections

3458 independent reflections

1720 reflections with  $I > 2\sigma(I)$ 

#### Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\rm min} = 0.431, T_{\rm max} = 0.795$ 

### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.115$ | 218 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.217$               | H-atom parameters constrained                              |
| S = 1.29                        | $\Delta \rho_{\rm max} = 0.61 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 3458 reflections                | $\Delta \rho_{\rm min} = -0.68 \text{ e } \text{\AA}^{-3}$ |

#### Table 1

Selected geometric parameters (Å, °).

| Zn1-N2     | 2.076 (7) | Zn1-Cl1     | 2.196 (3) |
|------------|-----------|-------------|-----------|
| Zn1-N1     | 2.098 (8) | Zn1-Cl2     | 2.249 (3) |
|            |           |             |           |
| N2-Zn1-N1  | 86.2 (3)  | N2-Zn1-Cl2  | 104.3 (2) |
| N2-Zn1-Cl1 | 121.1 (2) | N1-Zn1-Cl2  | 107.7 (2) |
| N1-Zn1-Cl1 | 117.4 (2) | Cl1-Zn1-Cl2 | 115.9 (1) |
|            |           |             |           |

#### Table 2

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                   | D-H          | $H \cdot \cdot \cdot A$ | $D \cdots A$           | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|----------------------------------------------------|--------------|-------------------------|------------------------|--------------------------------------|
| $N1 - H1 \cdots Cl1^{i}$ $N2 - H2 \cdots Cl2^{ii}$ | 0.91<br>0.91 | 2.68<br>2.47            | 3.585 (8)<br>3.295 (8) | 175<br>151                           |
|                                                    |              |                         |                        |                                      |

Symmetry codes: (i)  $-x + \frac{1}{2}$ ,  $y - \frac{1}{2}$ , z; (ii)  $-x + \frac{1}{2}$ ,  $y + \frac{1}{2}$ , z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

We acknowledge the financial support of the Huaihai Institute of Technology Science Foundation.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CF2157).

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Han, L.-J., Yang, S.-P., Wang, D.-Q. & Xia, H.-T. (2006). Acta Cryst. E62, m2607-m2609.
- Liu, Y.-F., Xia, H.-T., Yang, S.-P. & Wang, D.-Q. (2007). Acta Cryst. E63, m332m334.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (2007). E63, m2763 [doi:10.1107/S1600536807050866]

## [N,N'-Bis(4-chlorobenzyl)propane-1,2-diamine]dichloridozinc(II)

## S.-P. Yang, L.-J. Han, D.-Q. Wang and H.-T. Xia

#### Comment

We have reported recently the crystal structure of a  $Zn^{II}$  complex (Han *et al.*, 2006). As part of our study of  $Zn^{II}$  complexes with diamine derivatives, We report here the crystal structure of a new  $Zn^{II}$  complex, the title compound, (I).

Complex (I) is a mononuclear compound. The central zinc ion is coordinated by two Cl atoms and two N atoms of the N,N-bis(4-chlorobenzyl)propane-1,2-diamino ligand, forming a distorted tetrahedral coordination geometry (Fig. 1). The Zn—Cl and Zn—N bond lengths are comparable with those of Zn<sup>II</sup> complexes reported previously (Han *et al.*, 2006; Liu *et al.*, 2007), and the bond angle range around Zn<sup>II</sup> is 86.2 (3)°–121.1 (2)°. The N1/Zn1/N2 and Cl1/Zn1/Cl2 planes are nearly perpendicular, enclosing a dihedral angle of 87.2 (2)°; the sum of the internal angles is 517° in the five-membered ring Zn/N1/N2/C15–C16, the two benzene rings are located on opposite sides of the five-membered ring, and they enclose a dihedral angle of 20.2 (5)°.

In the crystal structure of (I), the molecules are linked by two N—H···Cl hydrogen bonds into a chain of  $R_2^2(8)$  rings (Bernstein *et al.*, 1995) along the [010] direction (Fig. 2).

#### Experimental

To a solution containing N,N-bis(4-chlorobenzyl)propane-1,2-diamine (3.20 g, 10 mmol) and ethanol (30 ml), a solution of zinc chloride (1.36 g, 10 mmol) and ethanol(10 ml) was added with stirring for 6 h at room temperature (298–300 K); the solid obtained was filtered off, washed successively with chloroform and ethanol, and dried at room temperature. Colourless crystals of (I) suitable for X-ray structure analysis were obtained by slow evaporation of a DMF-ethanol(1:10) solution containing the product over a period of three weeks (M.p. 499–501 K).

#### Refinement

The overall quality of the data is poor due to the poor crystal quality and weak diffraction, resulting in high *R*-factors.

All H atoms were located in difference Fourier maps and then treated as riding atoms, with C—H distances of 0.93 Å (aryl), 0.96 Å (methyl), 0.97 Å (methylene), and N—H = 0.91 Å, and with  $U_{iso}(H) = 1.5U_{eq}(C)$  (methyl) and  $U_{iso}(H) = 1.2U_{eq}(C,N)$  (aryl, methylene, amine).

### **Figures**



Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level.



Fig. 2. Part of the crystal structure of (I), showing the formation of a [010] chain of  $R_2^2(8)$  rings. For clarity, H atoms have been omitted. Dashed lines indicate hydrogen bonds. [Symmetry codes: (\*) 1/2 - x, -1/2 + y, *z*; (#) 1/2 - x, 1/2 + y, *z*.]

 $D_{\rm x} = 1.484 {\rm Mg m}^{-3}$ 

Melting point: 497 K Mo *K*α radiation

Cell parameters from 1955 reflections

 $\lambda = 0.71073 \text{ Å}$ 

 $\theta = 2.5 - 20.8^{\circ}$ 

 $\mu = 1.72 \text{ mm}^{-1}$ 

T = 298 (2) K

Prism, colourless

 $0.59 \times 0.18 \times 0.14 \text{ mm}$ 

### [N,N'-Bis(4-chlorobenzyl)propane-1,2-diamine]dichloridozinc(II)

Crystal data

 $[ZnCl_2(C_{17}H_{20}Cl_2N_2)]$   $M_r = 459.52$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 14.638 (2) Å b = 10.770 (1) Å c = 26.090 (3) Å V = 4113.2 (9) Å<sup>3</sup> Z = 8 $F_{000} = 1872$ 

#### Data collection

| Bruker SMART CCD area-detector<br>diffractometer               | 3458 independent reflections           |
|----------------------------------------------------------------|----------------------------------------|
| Radiation source: fine-focus sealed tube                       | 1720 reflections with $I > 2\sigma(I)$ |
| Monochromator: graphite                                        | $R_{\rm int} = 0.216$                  |
| T = 298(2)  K                                                  | $\theta_{\text{max}} = 25.0^{\circ}$   |
| $\varphi$ and $\omega$ scans                                   | $\theta_{\min} = 2.5^{\circ}$          |
| Absorption correction: multi-scan<br>(SADABS; Sheldrick, 1996) | $h = -10 \rightarrow 17$               |
| $T_{\min} = 0.431, \ T_{\max} = 0.795$                         | $k = -12 \rightarrow 11$               |
| 15270 measured reflections                                     | $l = -31 \rightarrow 31$               |

Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                |
|--------------------------------------------------------|-------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                            |
| $R[F^2 > 2\sigma(F^2)] = 0.115$                        | H-atom parameters constrained                                                       |
| $wR(F^2) = 0.217$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0488P)^2 + 0.5373P]$<br>where $P = (F_o^2 + 2F_c^2)/3$ |
| S = 1.29                                               | $(\Delta/\sigma)_{\text{max}} = 0.001$                                              |
| 3458 reflections                                       | $\Delta \rho_{max} = 0.61 \text{ e } \text{\AA}^{-3}$                               |
| 218 parameters                                         | $\Delta \rho_{min} = -0.68 \text{ e } \text{\AA}^{-3}$                              |
| Primary atom site location: structure-invariant direct | Extinction correction: none                                                         |

#### Special details

methods

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on F, with F set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2 \operatorname{sigma}(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

|     | x           | у            | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|-------------|--------------|--------------|---------------------------|
| Zn1 | 0.28774 (7) | 0.94334 (11) | 0.82844 (4)  | 0.0514 (4)                |
| Cl1 | 0.3749 (2)  | 1.0772 (2)   | 0.78794 (10) | 0.0687 (8)                |
| Cl2 | 0.3531 (2)  | 0.7603 (2)   | 0.84790 (12) | 0.0775 (9)                |
| C13 | 0.2262 (3)  | 0.5655 (4)   | 0.58833 (11) | 0.1036 (12)               |
| Cl4 | 0.5868 (3)  | 1.2971 (4)   | 0.98538 (16) | 0.1283 (15)               |
| N1  | 0.1588 (6)  | 0.9061 (7)   | 0.7969 (3)   | 0.054 (2)                 |
| H1  | 0.1537      | 0.8223       | 0.7938       | 0.065*                    |
| N2  | 0.2181 (5)  | 0.9931 (7)   | 0.8947 (2)   | 0.051 (2)                 |
| H2  | 0.2073      | 1.0762       | 0.8930       | 0.061*                    |
| C1  | 0.1418 (7)  | 0.9612 (10)  | 0.7448 (3)   | 0.064 (3)                 |
| H1A | 0.1792      | 1.0347       | 0.7405       | 0.077*                    |
| H1B | 0.0783      | 0.9855       | 0.7419       | 0.077*                    |
| C2  | 0.1646 (9)  | 0.8677 (11)  | 0.7035 (4)   | 0.063 (3)                 |
| C3  | 0.0958 (9)  | 0.8106 (11)  | 0.6772 (4)   | 0.074 (3)                 |
| Н3  | 0.0356      | 0.8340       | 0.6831       | 0.089*                    |
| C4  | 0.1148 (9)  | 0.7179 (12)  | 0.6418 (4)   | 0.076 (4)                 |
| H4  | 0.0668      | 0.6809       | 0.6240       | 0.092*                    |
| C5  | 0.2029 (9)  | 0.6795 (12)  | 0.6323 (4)   | 0.070 (3)                 |
|     |             |              |              |                           |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

| C6   | 0.2716 (9)  | 0.7410 (13) | 0.6581 (4) | 0.077 (3) |
|------|-------------|-------------|------------|-----------|
| H6   | 0.3323      | 0.7205      | 0.6516     | 0.092*    |
| C7   | 0.2518 (10) | 0.8318 (13) | 0.6931 (4) | 0.074 (3) |
| H7   | 0.2996      | 0.8703      | 0.7103     | 0.089*    |
| C8   | 0.2633 (8)  | 0.9668 (11) | 0.9458 (3) | 0.061 (3) |
| H8A  | 0.2190      | 0.9788      | 0.9729     | 0.073*    |
| H8B  | 0.2827      | 0.8807      | 0.9466     | 0.073*    |
| C9   | 0.3446 (7)  | 1.0486 (11) | 0.9558 (4) | 0.058 (3) |
| C10  | 0.3392 (8)  | 1.1473 (11) | 0.9888 (4) | 0.064 (3) |
| H10  | 0.2839      | 1.1632      | 1.0050     | 0.077*    |
| C11  | 0.4120 (9)  | 1.2236 (11) | 0.9989 (4) | 0.072 (3) |
| H11  | 0.4065      | 1.2894      | 1.0217     | 0.086*    |
| C12  | 0.4930 (9)  | 1.2006 (12) | 0.9745 (4) | 0.075 (3) |
| C13  | 0.5032 (9)  | 1.1033 (12) | 0.9416 (4) | 0.077 (4) |
| H13  | 0.5592      | 1.0891      | 0.9257     | 0.092*    |
| C14  | 0.4298 (9)  | 1.0259 (11) | 0.9320 (4) | 0.070 (3) |
| H14  | 0.4365      | 0.9589      | 0.9098     | 0.084*    |
| C15  | 0.0914 (7)  | 0.9464 (9)  | 0.8355 (3) | 0.053 (2) |
| H15  | 0.0793      | 1.0350      | 0.8304     | 0.063*    |
| C16  | 0.1287 (7)  | 0.9288 (9)  | 0.8889 (3) | 0.055 (3) |
| H16A | 0.0857      | 0.9617      | 0.9137     | 0.066*    |
| H16B | 0.1364      | 0.8409      | 0.8958     | 0.066*    |
| C17  | 0.0017 (8)  | 0.8766 (11) | 0.8300 (4) | 0.083 (4) |
| H17A | -0.0237     | 0.8924      | 0.7967     | 0.125*    |
| H17B | -0.0403     | 0.9042      | 0.8559     | 0.125*    |
| H17C | 0.0124      | 0.7892      | 0.8339     | 0.125*    |

# Atomic displacement parameters $(\text{\AA}^2)$

|     | $U^{11}$   | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|------------|-------------|-------------|--------------|-------------|--------------|
| Zn1 | 0.0501 (7) | 0.0421 (7)  | 0.0619 (7)  | -0.0004 (6)  | 0.0054 (6)  | 0.0067 (6)   |
| Cl1 | 0.070 (2)  | 0.0510 (16) | 0.0855 (18) | -0.0078 (14) | 0.0194 (15) | 0.0113 (14)  |
| Cl2 | 0.068 (2)  | 0.0388 (15) | 0.126 (2)   | 0.0107 (14)  | 0.0061 (17) | 0.0128 (15)  |
| C13 | 0.133 (4)  | 0.110 (3)   | 0.0682 (17) | -0.005 (3)   | 0.0009 (19) | -0.0178 (18) |
| Cl4 | 0.085 (3)  | 0.132 (3)   | 0.168 (4)   | -0.039 (3)   | -0.030 (3)  | -0.002 (3)   |
| N1  | 0.054 (6)  | 0.050 (5)   | 0.059 (5)   | -0.010 (4)   | 0.000 (4)   | 0.006 (4)    |
| N2  | 0.053 (6)  | 0.048 (5)   | 0.052 (4)   | -0.006 (4)   | 0.011 (4)   | 0.011 (4)    |
| C1  | 0.063 (8)  | 0.066 (7)   | 0.063 (6)   | -0.010 (6)   | -0.006 (6)  | 0.008 (6)    |
| C2  | 0.066 (9)  | 0.076 (8)   | 0.046 (6)   | -0.005 (7)   | 0.002 (6)   | 0.009 (6)    |
| C3  | 0.065 (8)  | 0.099 (9)   | 0.057 (7)   | -0.015 (7)   | -0.005 (6)  | -0.006 (7)   |
| C4  | 0.075 (10) | 0.097 (10)  | 0.057 (7)   | -0.020 (8)   | -0.011 (6)  | -0.004 (7)   |
| C5  | 0.075 (9)  | 0.082 (9)   | 0.052 (6)   | -0.009 (8)   | 0.000(7)    | -0.003 (6)   |
| C6  | 0.069 (9)  | 0.097 (10)  | 0.064 (7)   | -0.007 (7)   | 0.003 (7)   | -0.005 (7)   |
| C7  | 0.070 (9)  | 0.095 (10)  | 0.058 (6)   | -0.007 (8)   | -0.005 (6)  | -0.007 (6)   |
| C8  | 0.062 (8)  | 0.073 (8)   | 0.047 (6)   | -0.002 (6)   | 0.007 (5)   | 0.014 (5)    |
| C9  | 0.056 (8)  | 0.066 (8)   | 0.053 (6)   | 0.005 (7)    | -0.006 (5)  | 0.010 (6)    |
| C10 | 0.059 (9)  | 0.075 (8)   | 0.058 (7)   | 0.011 (7)    | -0.002 (6)  | 0.008 (6)    |
| C11 | 0.068 (9)  | 0.079 (9)   | 0.068 (7)   | -0.003 (7)   | -0.013 (7)  | 0.004 (6)    |

| C12             | 0.063 (9)     | 0.082 (9)  | 0.079 (8) | -0.003 (7) | -0.017 (7) | 0.008 (7)  |
|-----------------|---------------|------------|-----------|------------|------------|------------|
| C13             | 0.061 (9)     | 0.091 (10) | 0.078 (8) | 0.003 (7)  | -0.003 (7) | 0.009 (7)  |
| C14             | 0.068 (10)    | 0.078 (9)  | 0.064 (7) | 0.001 (7)  | -0.004 (7) | -0.002 (6) |
| C15             | 0.055 (6)     | 0.044 (5)  | 0.060 (6) | -0.008 (6) | -0.003 (5) | 0.000 (5)  |
| C16             | 0.049 (7)     | 0.056 (6)  | 0.059 (6) | -0.009 (5) | 0.006 (5)  | 0.003 (5)  |
| C17             | 0.070 (9)     | 0.077 (8)  | 0.103 (9) | -0.014 (7) | 0.008 (7)  | 0.003 (7)  |
|                 |               |            |           |            |            |            |
| Geometric parar | neters (Å, °) |            |           |            |            |            |
| Zn1—N2          |               | 2.076 (7)  | C6-       | —Н6        | 0.9        | 930        |
| Zn1—N1          |               | 2.098 (8)  | C7–       | -H7        | 0.9        | 930        |
| Zn1—Cl1         |               | 2.196 (3)  | C8-       | —С9        | 1.5        | 503 (14)   |
| Zn1—Cl2         |               | 2.249 (3)  | C8-       | -H8A       | 0.9        | 970        |
| Cl3—C5          |               | 1.714 (13) | C8-       | -H8B       | 0.9        | 970        |
| Cl4—C12         |               | 1.746 (13) | С9-       | C10        | 1.3        | 571 (14)   |
| N1-C15          |               | 1.476 (12) | С9-       | C14        | 1.4        | 14 (14)    |
| N1—C1           |               | 1.502 (11) | C10       | —C11       | 1.3        | 571 (14)   |
| N1—H1           |               | 0.910      | C10       | —H10       | 0.9        | 930        |
| N2-C16          |               | 1.488 (12) | C11       | —C12       | 1.3        | 667 (16)   |
| N2—C8           |               | 1.515 (11) | C11       | —H11       | 0.9        | 930        |
| N2—H2           |               | 0.910      | C12       | —C13       | 1.3        | 63 (14)    |
| C1—C2           |               | 1.511 (14) | C13       | —C14       | 1.3        | 83 (15)    |
| C1—H1A          |               | 0.970      | C13       | —Н13       | 0.9        | 930        |
| C1—H1B          |               | 0.970      | C14       | —H14       | 0.9        | 930        |
| С2—С7           |               | 1.362 (16) | C15       | —C16       | 1.5        | 509 (11)   |
| С2—С3           |               | 1.365 (15) | C15       | —C17       | 1.5        | 520 (13)   |
| C3—C4           |               | 1.389 (15) | C15       | —Н15       | 0.9        | 980        |
| С3—Н3           |               | 0.930      | C16       | —Н16А      | 0.9        | 970        |
| C4—C5           |               | 1.377 (16) | C16       | —H16B      | 0.9        | 970        |
| C4—H4           |               | 0.930      | C17       | —Н17А      | 0.9        | 960        |
| C5—C6           |               | 1.380 (15) | C17       | —H17B      | 0.9        | 960        |
| С6—С7           |               | 1.369 (16) | C17       | —Н17С      | 0.9        | 960        |
| N2—Zn1—N1       |               | 86.2 (3)   | С9-       | C8N2       | 112        | 2.9 (8)    |
| N2—Zn1—Cl1      |               | 121.1 (2)  | С9-       | C8H8A      | 10         | 9.0        |
| N1—Zn1—Cl1      |               | 117.4 (2)  | N2-       | C8H8A      | 10         | 9.0        |
| N2—Zn1—Cl2      |               | 104.3 (2)  | С9-       | C8H8B      | 10         | 9.0        |
| N1—Zn1—Cl2      |               | 107.7 (2)  | N2-       |            | 10         | 9.0        |
| Cl1—Zn1—Cl2     |               | 115.9 (1)  | H8A       | А—С8—Н8В   | 10         | 7.8        |
| C15—N1—C1       |               | 113.1 (8)  | C10       |            | 11         | 7.4 (11)   |
| C15—N1—Zn1      |               | 106.1 (5)  | C10       | C9C8       | 12         | 1.2 (10)   |
| C1—N1—Zn1       |               | 115.3 (6)  | C14       | C9C8       | 12         | 1.4 (11)   |
| C15—N1—H1       |               | 107.3      | С9-       | C10C11     | 12         | 2.7 (11)   |
| C1—N1—H1        |               | 107.3      | С9-       | —С10—Н10   | 113        | 8.6        |
| Zn1—N1—H1       |               | 107.3      | C11       | —С10—Н10   | 113        | 8.6        |
| C16—N2—C8       |               | 112.7 (7)  | C12       |            | 113        | 8.4 (11)   |
| C16—N2—Zn1      |               | 103.2 (5)  | C12       | —C11—H11   | 12         | 0.8        |
| C8—N2—Zn1       |               | 118.0 (6)  | C10       |            | 12         | 0.8        |
| C16—N2—H2       |               | 107.5      | C13       |            | 12         | 1.9 (12)   |
| C8—N2—H2        |               | 107.5      | C13       |            | 113        | 8.2 (11)   |

| Zn1—N2—H2      | 107.5       | C11—C12—Cl4     | 119.9 (11) |
|----------------|-------------|-----------------|------------|
| N1—C1—C2       | 110.2 (8)   | C12—C13—C14     | 119.5 (12) |
| N1—C1—H1A      | 109.6       | С12—С13—Н13     | 120.3      |
| C2—C1—H1A      | 109.6       | C14—C13—H13     | 120.3      |
| N1—C1—H1B      | 109.6       | C13—C14—C9      | 120.1 (11) |
| C2—C1—H1B      | 109.6       | C13—C14—H14     | 120.0      |
| H1A—C1—H1B     | 108.1       | С9—С14—Н14      | 120.0      |
| C7—C2—C3       | 117.5 (11)  | N1-C15-C16      | 110.6 (8)  |
| C7—C2—C1       | 122.6 (11)  | N1—C15—C17      | 111.6 (8)  |
| C3—C2—C1       | 119.8 (12)  | C16—C15—C17     | 109.8 (8)  |
| C2—C3—C4       | 120.8 (11)  | N1—C15—H15      | 108.3      |
| С2—С3—Н3       | 119.6       | C16—C15—H15     | 108.3      |
| С4—С3—Н3       | 119.6       | С17—С15—Н15     | 108.3      |
| C5—C4—C3       | 121.5 (11)  | N2-C16-C15      | 110.6 (7)  |
| C5—C4—H4       | 119.2       | N2-C16-H16A     | 109.5      |
| С3—С4—Н4       | 119.2       | C15-C16-H16A    | 109.5      |
| C4—C5—C6       | 116.8 (11)  | N2-C16-H16B     | 109.5      |
| C4—C5—Cl3      | 121.5 (10)  | C15—C16—H16B    | 109.5      |
| C6—C5—Cl3      | 121.6 (11)  | H16A—C16—H16B   | 108.1      |
| C7—C6—C5       | 120.9 (12)  | С15—С17—Н17А    | 109.5      |
| С7—С6—Н6       | 119.6       | C15—C17—H17B    | 109.5      |
| С5—С6—Н6       | 119.6       | H17A—C17—H17B   | 109.5      |
| C2—C7—C6       | 122.4 (12)  | С15—С17—Н17С    | 109.5      |
| С2—С7—Н7       | 118.8       | H17A—C17—H17C   | 109.5      |
| С6—С7—Н7       | 118.8       | H17B—C17—H17C   | 109.5      |
| N2—Zn1—N1—C15  | 5.5 (6)     | C1—C2—C7—C6     | 175.4 (10) |
| Cl1—Zn1—N1—C15 | -117.7 (5)  | C5—C6—C7—C2     | -1.3 (19)  |
| Cl2—Zn1—N1—C15 | 109.3 (5)   | C16—N2—C8—C9    | -169.7 (9) |
| N2—Zn1—N1—C1   | 131.5 (7)   | Zn1—N2—C8—C9    | 70.2 (10)  |
| Cl1—Zn1—N1—C1  | 8.3 (7)     | N2-C8-C9-C10    | 103.3 (11) |
| Cl2—Zn1—N1—C1  | -124.7 (6)  | N2-C8-C9-C14    | -77.4 (13) |
| N1—Zn1—N2—C16  | 21.4 (6)    | C14—C9—C10—C11  | 0.6 (15)   |
| Cl1—Zn1—N2—C16 | 141.3 (5)   | C8—C9—C10—C11   | 179.9 (9)  |
| Cl2—Zn1—N2—C16 | -85.9 (6)   | C9—C10—C11—C12  | 0.6 (16)   |
| N1—Zn1—N2—C8   | 146.4 (7)   | C10-C11-C12-C13 | -1.2 (17)  |
| Cl1—Zn1—N2—C8  | -93.7 (7)   | C10-C11-C12-Cl4 | 178.9 (8)  |
| Cl2—Zn1—N2—C8  | 39.1 (7)    | C11—C12—C13—C14 | 0.6 (17)   |
| C15—N1—C1—C2   | -143.6 (9)  | Cl4—C12—C13—C14 | -179.5 (8) |
| Zn1—N1—C1—C2   | 94.1 (9)    | C12—C13—C14—C9  | 0.7 (16)   |
| N1—C1—C2—C7    | -69.9 (13)  | C10-C9-C14-C13  | -1.2 (15)  |
| N1—C1—C2—C3    | 106.2 (11)  | C8—C9—C14—C13   | 179.4 (9)  |
| C7—C2—C3—C4    | 1.0 (16)    | C1—N1—C15—C16   | -159.4 (8) |
| C1—C2—C3—C4    | -175.2 (10) | Zn1—N1—C15—C16  | -32.1 (8)  |
| C2—C3—C4—C5    | 0.6 (18)    | C1—N1—C15—C17   | 78.1 (10)  |
| C3—C4—C5—C6    | -2.6 (18)   | Zn1—N1—C15—C17  | -154.6 (7) |
| C3—C4—C5—Cl3   | -179.8 (9)  | C8—N2—C16—C15   | -173.8 (8) |
| C4—C5—C6—C7    | 2.9 (18)    | Zn1—N2—C16—C15  | -45.5 (9)  |
| Cl3—C5—C6—C7   | -179.9 (9)  | N1—C15—C16—N2   | 54.7 (10)  |
| C3—C2—C7—C6    | -0.7 (17)   | C17—C15—C16—N2  | 178.2 (8)  |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                      | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H···A |  |  |
|--------------------------------------------------------------|-------------|--------------|--------------|---------|--|--|
| N1—H1…Cl1 <sup>i</sup>                                       | 0.91        | 2.68         | 3.585 (8)    | 175     |  |  |
| N2—H2···Cl2 <sup>ii</sup>                                    | 0.91        | 2.47         | 3.295 (8)    | 151     |  |  |
| Symmetry codes: (i) -x+1/2, y-1/2, z; (ii) -x+1/2, y+1/2, z. |             |              |              |         |  |  |





